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Short introduction
Superconductivity
Magnetic flux quantization
Josephson junctions
SQUIDs



Magnetic flux quantization
In superconductors

The superconducting flux quantum was predicted by London (1948) using a
phenomenological semiclasical model.

Superconductivity is a macroscopic quantum phenomenon.

i ‘ ' ‘ e 16 Is the single superconducting wave function described all

condensed collective of Cooper electron pairs (2e, 2m). | vd | 2= Ng /2

p=2mv +2eA s the gauge-invariant momentum of Cooper pairs

Meissner effect hvae =2>NS+2€A
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A is the London penetration depth



Tunnel Josephson junction
B.D. Josephson, 1962

Y = |‘P1|exp (i6))

superconductor

tunnel barrier L —W, = ‘le| exp (16,)

superconductor

superconducting phase difference: @ =6, — 6,

I =Ism¢e Fully non-dissipative regime for I<I,

Resistive-Capacitive Shunted Junction (RCSJ-model) V= [h /(2e)]dep/dt
' =@, /(2m)de/dt

1 ,=1. sing - “Josephson channel”
|, =V/IR,= [®,/(2nR,)]@; - “resistive channel”

|,=CdV/dt =[®,C/(27)]e, - “capacitive channel”
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I .sing + [Dy/(2nR )]+ [@,C/(2n)]@, = 14 |*E,/I
[7/(2e)]°C o, + [7 /(Ze)]ZRn'l(pt +Eysing =E;y (/1)




Magnetic flux quanta in Josephson junctions
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Meissner state destruction
in type 1 superconductors

Long Josephson junction
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Josephson vortex
A; 1S the Josephson
penetration depth;

d,, =d+2)

I>IC H
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V ~dn/dt ~ ® ~ do /dt
¢ =6,-6,
2eV= ho= hdo/dt
V= [h /(2e)]de/dt = @, /(2 7z)dp/dt

s (@) =1.sINo

. (@) =1.sIn@ Josephson equation |
2eV= ho= hde/dt Josephson equations 11



Superconducting quantum interferometer
(dc-SQUID)
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lL=1.sIngy; =1 sin @y 1=1.(SIn @+ singy)

SIN @, + SINQL=2sIN[(P,+ @,)/2] COS[(@,- Pp)/2];

| =21, cos(nD/D,)

new critical current

Maximum of the current I Is
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SQUID is analog
of light
Interference on
double slit



Josephson junction energy

. (@)=1_sIn@ Josephson equation |
2eV= ho= hdep/dt Josephson equations 11
¢ =6,-6,; V=1[hl(2e)]de/dt =(2n/®,)dp/dt

t I do . &
E ooy = | 1Vt = — [ I sing = =dt =
. 2e dt 2
where E; = al, = Dol
2e 2T
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E =B ~Ep =E,[(L-c0s9) — =]
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Josephson junctions In
‘quantum limit”

Superconducting gqubits



Nanotechnology

- Different technique of thin film
sputtering

- Optical and electron lithography

EE  100nm JEOL
50,000 30.0kvV SEI  SEM WD 6.0mm

- lon and Reactive ion etching



Shadow evaporation technique

Al, evaporation

Al,
evaporation ;\\\ ;\\\

Al-AlOx-Al Josephson junction
fabrication by means of electron
Lift-off beam lithography and shadow
F - evaporation

I

shadow evaporation at two angles
base pressure 10 -9 mbar o




“Equation of motion” for Josephson tunnel
junction. Analogy with a pendulum.

Resistive-Capacitive Shunted Junction (RCSJ-model)

I 1 ,=1. sing - “Josephson channel”
:

’ |, =V/IR,= [®,/(2nR,)]®, - “resistive channel”
T  1y=CdV/dt =[®,C/(2r)]e - “capacitive channel
Hiy I,sing + [0,/(27R Vo + [D,C/2m)]pe=lg  [FE/I.

[1/(2€)]°C @y, + [ 1(28)PR 2y + E g sin 9 = E (Ig/1)

pa—
-

Joy + Mo, +mglsing=M

Phase angle ¢ Phase difference @
Moment of inertia  J=m | 2 -> [h /(2e)]?C
T Viscosity coefficient > [l /(2e)]2Rn'l
mg sing)| Restoring moment (mgsing)|l = E,sing

Applied torque moment T - E, (/1)



Submicron tunnel junctions in normal state

Submicron-scale tunnel junction with small enough capacitance C.
Single electron Coulomb (charging) energy E. =e?/(2C) is large.
Q is charge and E_.=Q?/(2C)=CV?/2 is energy of this capacitor.
NIN Discharge of the capacitor is not favorable for some value Q:

~ 2 Nm

Limitationon T and R:

EC>kT (thermal fluctuations), C<10-15 F,T>1
1/R++1/R<1/Rg (quantum fluctuations)
Ro=h/ (4e%)~6 KQ is the quantum resistance

13

E'Cx\“ E (E

new energy E'.=(Q-[e[)?/(2C) becomes larger for 0<Q<[e|/2 !
Coulomb blockade of tunneling for V: (V=Q/C)
— 0<V<|e|/(2C)
he increase of the differential resistance
around zero bias is called the Coulomb blockade.

 Qle
-1/2 12
1.0—r :
unneling is
E',\-E,‘:>O prohibited
K o05] ]
Region of
Coulomb
le=
00 blockade | Q
;05 0.0 0.‘5\ VCJe
/




Josephson junction in quantum limit

“Quantum Josephson junction” IS a submicron-scale tunnel junction with small
enough capacitance C—>0.
By analogy with “Quantum pendulum’: when m=>0 null oscillations arise,

because AA M ~ h. ((p:O u M=0 without oscillations!)

M=J @, is angular momentum.

Josephson junction angular momentum is
M= J g, =[h /(2¢)]°Ce, = [ /(2¢)]C V=Q[h /(2¢)]

ApAQ ~2e | or A@An-~1

where Q is the junction (capacitor) charge, Nn= Q/(2e) is excess Cooper pairs.
Quantum Josephson junctions have large Coulomb energy |E. ~ E; |due to
small capacitance: E. =(2e)%(2C)

(Tunnel junctions with sizes smaller than 0.3x0.3 pmz, C~10F)
Thus total energy of the quantum Josephson junction is

E= (2e)?/(2C) + E, (1- cos @) - [®,/(2m)]lo

14



Thermal and quantum fluctuations of the
critical current

The resistive state is observed at | * < | = (2e/h)E;
due to thermal activation through the barrier U (1)
The rate of the thermo-activated decay is

Uy(1)
= exp(——2
o, = () exp( T )
N where o(l) = o [1- (111 )7]*;  o©,=(L,C)

and Uy (1)=(4N2/3) E,[1- (I/1 )]¥

Quantum decay for “quantum” Josephson junctions
U 0 (|)) (from ground state)

ho(l)

0 = a,0(D) exp(-«

KT-> h o(l), the null oscillation energy

15



Phase quantum fluctuations and macroscopic
guantum coherence

S| S

The Coulomb blockade fixes the charge, reducing AQ

in the uncertainty relation AQAQ ~ 2e This means
that the uncertainty (blurring) of the phase, Ao,

~ 2 nm increases.
Potentials for the phase
e and the flux qubits

» quantum decay

—4r

B R S T o quantum
150 —-100 -50 ! o quantization of states coherence due to
IVC of a submicron-scale  1€vels in the well quantum tunneling

junction of the potential



Qubit is a quantum bit of information
The simplest qubit is a single quantum particle with spin 72

classical bit quantum bit
(bit) (qubit)

0 1 0} 2
wave function
V) =a|0)+ A1)
superposition of states -

17 quantum parallelism Y =cos‘§7\o>+ev' singm




SUPERCONDUCTING QUBITS

superconducting nanostructures
ultra-low temperatures (<50 mK)
* microwave technique

artificial atom

clockwis | 1> Flux quq?it

counter R S— | O>
lockwis

«/\I\/\‘fm

manipulations by qubit states
by means of microwaves pulses
6-10 GHz

current in

the ring Josephson tunnel

junctions

2D-transmon (x-mon), readout by the coplanar (on-chip) resonator
*

0




Superconducting flux qubit
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. Flux qubit spectrum
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PULSE TECHNIQUES OF MICROWAVE
MANIPULATIONS AND CONTROL OF QUBIT STATES

Pulse
preparation %RF R
:rChopper Band

[0>+]1>

The result: a microwave pulse with a controlled amplitude, duration, and
phase is applied to the qubit, allowing to manipulate the qubit state.

Readout: the z-projection of the qubit state is read by applying a reading pulse at
the resonator frequency.



Single qubit state readout

The basis of the dispersive readout method:
dispersive frequency shift of the resonator
when the state of the qubit changes:

o~

Aw,=+ —2

w.q _C{Jfr

~

g 1s effective coupling of resonator and qubit;
Wq =vih is the qubit frequency;

transmission amplitude

| 1) 0

probe frequency

Wy 1S the Initial resonant frequency of the resonator

EJ
o>

3>

£ = 2L, * (& — Py/2)

|, 1s the current in the qubit ring

“E

v=vA’+e  The projection of

the qubit state on
the z axis Is read




Phase qubit: Rabi flopping

Transmission phase [rad]
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Coherence time:

relaxation time T1 and free precession time T2

Qubit lifetime (ns)
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3D transmon
Transmon

Charge echo
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Operations per error

Devoret &
Schoelkopf,
Science 339,
1169 (2013)



Methods of measuring of relaxation time and free
precession time
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Russian consortium on development
of superconducting quantum technologies

MISIS: Prof Ustinov MIPT. Prof Astafiev

Lab of Artificial Quantum Systems
Low-temperature measurement

 Nano-fabrication

Lab of Quantum Metamaterials
* Low-temperature measurement
* Qubit characterization

BMSTU: Dr Rodionov ISSP: Prof Ryazanov
Professional nanotechnology center « Low-T, qubit characterization

Other players: Russian Quantum Center, Scoltech

» The consortium started on 2016
» Qubits fabrication technology has been setup
» Qubit control and manipulation techniques are developed

» Some facilities still have to be setup
26



WOTT PAH
ISSP RAS

Qubits in Russia /tgdﬁalé- MMC{@ @

Flux qubit in MW line — —
May 2015 QX | 7
the first Q. o
qubit made o |
in Russia =

magnetic flux

_ . - 2016
resonator frequency —... = connected
N .. to resonator
27



Transmission imaginary part [a.u.]

Flux qubit shunted by large capacitance
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3D-transmons
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PLANAR QUBITS (XMONS)

The coherence
time
T,=11.5 ps

A —«136+018ps
| ,|Aw/,2n1,,,1,o,21,,+,ooo,1, MHz| | .

delay of readout |

AT 1364018 e

| {[dw/2n|=1.021£0001 MHz| |

0 5 10 15 20 25 30 0 2 4 6 8 10
delay of readout (ps) delay of readout (ps)




Implementation of single-qubit quantum gates

Logical operations with qubits are called guantum gates

!

Quantum gate NOT translates W)=« 0+ 81 in ¥ =80 +al

- N (b
v = (i’ é) :f(’;) — (.-_1) For example, +x|0> =|1>

Superconducting qubit with T,=2.14 + 0.14 mkec.

Implemintation of NOT gate (+ x|0>=|1>)

model . . ~ experiment :
A P . Results of the radial

tomography

Fidelity (accuracy) of the
single-qubit operation: 97%.




MULTIQUBIT SPECTRA (2-XMON-QUBIT SYSTEM)
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MULTIQUBIT STRUCTURES (3-XMON-QUBIT SYSTEM)

) S-parameter phase
S pargmetgr phase 5.9 GHz 2 :

5.9 GHz

f=7.15GHz ? .
Q = 6000
o | 58GHa 2 ssoH ]
the target ' '
the control qubit
ubit | | ! :
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-1 -500 m 0 500 m 1 -1 -500 m 0 500m 1
- Abstract voltage-like sweep parameter Abstract voltage-like sweep parameter
The middle transmon
coupler readout by the first readout by the
resonator second resonator

— 172122
Hin = JO0x 0y

J~20-30 MHz



IMPLEMENTATION OF TWO-QUBIT QUANTUM OPERATIONS

The CNOT quantum gate moves state |0)to state |1 of the
target qubit only if the control qubit is excited

Input Output

the control
. ) —— [4) 1 000 A B A B
NOT UCNDT= 000 1 00 0 0
h
i —B— el R EEE
CNOT 11 1 0
the control qubit ~ the target qubit

Cross-resonance Rabi
. . . oscillations

in the g'rou.nd state
excited (|0)9|]% A i . |
i R cross-resonant microwave signa
- W&ﬁﬂw i - is applied through the control qubit
00 04 08 12 o00f 04 o8 12 atthefrequency ofthetargetqubit
us + the exciting t-pulse is applied at
CrosS-resonance  the frequency of the control qubit.
duration

ne:Sl;(fR_]])

RelS;1(fr1)]




GROVER SEARCH ALGORITHM DEMONSTRATION (2 QUBITS)

Initialization + Oracle U Grover reflection U,
the control | ]l | | b il |
qubit |0>JL¢X/2‘ 0 LY/24 | <~-X/2—
— B} — [
= Y2 | 9L X/z—M

the target ey
qgubit |O> ,_X/% | L

T
|s) = ﬁ(IOO) +101) +|10) + |11))
superposition or all basis states

In the simplest case of a two-qubit system with
N = 4, one iteration (one appeal to the oracle)
Is sufficient, and the final state of the idealized
system exactly coincides with the desired one

Population of two-qubit

Oracle is an unitary operator U,
which acts on the vectors x in the
Hilbert space as follows:

{U(x = |a)) = —|a) >
U(x # |a) =x

la) is the sought state

In general:
UU.translates |s) to |a)
with an accuracy of
~1/4N!

o1 iSWAP (01910)
....... '1(,5
g %“/ WA

Pulse duratlon (MS)



GROVER SEARCH ALGORITHM
DEMONSTRATION (results)

number of
“coin flips” search for state |00> search for state [01>

10000 -

8000 4
G000 4
4000 4

2000

search for state |10> search for state [11>

number of measurements for
each of the four states

2000 4 ]
n.-_—_ | i 7
100> 01> 110> 111> 100> 07> 110> R
readout states readout states

The blue columns indicate the number of different states being read for 10,000 runs. Database cells: |00>,
101>, 110>, |11>.

The red columns represent the results expected for an ideal (error-free) quantum computer, and the black
dotted line represents a 50% probability (above the limit for a classical computer with a single Oracle call).
Measured probabilities of correct execution of the state search algorithm: [00> — 58%, [01> — 57%, [10> —
53%, n [11> = 57%. 36



Two types of qguantum computing devices

* Analog devices (quantum simulators) are "direct" modeling
of a specific material using an artificial qguantum system. Fast
search of system properties due to quantum parallelism (the

system is simultaneously in all possible states, choosing the
optimal one).

« More advanced algorithmic devices (universal quantum

computers) — finding the properties of the system through the
use of quantum algorithms. They can be programmed like a
regular computer. Not tied to a specific task.



B MULTIQUBIT STRUCTURE
TECHNOLOGY

Fabricated at Joint (Dukhov Institute of Automatics and Bauman Moscow State Technical
University) Technological Center

« Experimental samples of two-qubit circuits, including those with
tunable coupling

« Josephson parametric amplifiers with high saturation power based
on Al-AlOx-Al junctions

« 5-qubit chains of weakly anharmonic qubits coupled to each other

 arrays of more than 20 qubits coupled to a microwave resonator

38



ANALOG SIMULATION ON THE 5-QUBIT CHAIN

Analog quantum simulation of an one-dimensional Ising spin chain

Microwave transmission through the chain of transmons u ey .
0014
' EXp'. N 13 I0012§
MISIS (:ID: 12 -DOlDé
5“ " -ouoa%
——‘ 5 -Duusé
30 H
o 0004 §
(] 8
E 1 00023‘
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3-d qubit frequency tuning (by
3-d qubit frequency tuning (by current I, A) current I, A)
Different qubit frequencies ~ Theory
| Dukhov
Calculation model based on the Inst

dynamics of the spin chain:
the Ising chain Hamiltonian with N=5, sigma-x (XX)
coupling between adjacent qubits and the field along

z, taking into account the dissipation Current I,
A

Frequency, GHz




ARRAY OF QUBITS COUPLED THROUGH A
COMMON RESONATOR

The coupling of the qubits with the
comman resonatar /s ~40 MHz

dc-lines for the qublt frequency tunlng

Collective anticrossings £
increase = "

~ a*‘/N, qg S
where N is the number of g
interacting qubits s

frequency, GHz

Generator

Qubit Qubits #2  Qubits from #2
#2 and #3 to #6

oV

56

5 6 Qubit frequency, GHz 5 6

Qubits from #2 Qubits from #2 Qubits from #2
to #11 to#16 to #24

Qubit frequency, GHz

<_
Z

N, number of qubits

Collective qubit anti-
crossings (splitting of
spectra):
the qubits were
alternately tuned to a
frequency of the
common resonator

10 15 20 40



