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PLAN 

• Josepson junction in the quasiclasical limit 

• Josephson junction in the quantum limit 

• Charge, Flux and Phase qubits. Transmons 

• Qubit control and readout 

• Coherence times and their measurements 

• Single and two-qubits circuits and quantum operations 

• Implementation the Grover search algorithm 

• Analog devices (quantum simulators) – Ilya Moskalenko 

 



Short introduction  

Superconductivity 

Magnetic flux quantization 

Josephson junctions 

SQUIDs 
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Magnetic flux quantization  

in superconductors 

The superconducting flux quantum was predicted by London (1948) using a 
phenomenological semiclasical model. 

             Superconductivity is a macroscopic quantum phenomenon. 

 = e i  is the single superconducting wave function described all  

condensed collective of Cooper electron pairs (2e, 2m).   2= nS / 2  

p=2mvs+2eA     is the gauge-invariant momentum of Cooper pairs 

  

Meissner effect                                  ħ   =2mvs+2eA 
in bulk superconductor                                      C                                     C 

                                                                        ħ    dl =2e  A dl =   B dS 

                                                               2 n = (2e/ ħ)  

                                                                = n0 

                                                                                                Magnetic flux quantum 

                                                        0 = h/ (2e) =2.067833636×10−15 Wb  

                                                                           (2.067833636×10−7 G cm2)                                                       

 

 

  

         

  is the London penetration depth 



Resistive-Capacitive Shunted Junction (RCSJ-model)                         

                           IJ=Ic sin - “Josephson channel” 

                                In=V/Rn= [0/(2Rn)]t - “resistive channel” 

                                ID=CdV/dt =[0C/(2)]tt - “capacitive channel”  

 

                                        Ic sin + [0/(2Rn)]t + [0C/(2)]tt = Ie         |*EJ/Iс  

                                 [ħ/(2e)]2C tt + [ħ /(2e)]2Rn
-1t + EJ sin  = EJ (Ie/Iс) 

                                                                                

Tunnel Josephson junction 
B.D. Josephson,  1962  

Ie 

In 
IJ 

ID 

J 
Rn С 

V= [ħ /(2e)]d/dt 

= 0 /(2)d/dt 

EJ=Ic0/2 

Fully non-dissipative regime for I<Ic 



Magnetic flux quanta in Josephson junctions 

Is () = Iс sin              Josephson equation   I 

2eV= ħ= ħd/dt        Josephson equations  II 

      

   

B 

Long Josephson junction 
L>J 

dm 

J 
Josephson vortex 

J is the Josephson 

penetration depth;    

dm =d+2 

        V ~ dn/dt ~  ~ d /dt 

                          =2 -1 

                 2eV= ħ= ħd/dt   

     V= [ħ /(2e)]d/dt = 0 /(2)d/dt 

                           Is () = Iс sin  
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Meissner state destruction 

in type II superconductors 
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Superconducting quantum interferometer 

(dc-SQUID) 
                                                                                     3                        2                                 

                                  13+42 =3- 1 +  2- 4 =(2e/ħ)Adl + (2e/ħ) Adl 

                                                                                    1                       4 

                                          2-
 1 +  3- 4 = a- b =  (2e/ħ)  Adl 

                                      a- b =2/0         a= 2-
 1; b= 4-

 2 

                                 Ia = Ic sin a;   Ib = Ic sin b;  I = Ic(sin a+ sinb) 

     sin a+ sinb=2sin[(a+ b)/2] cos[(a- b)/2];       a- b =2/0  

   I = 2Ic cos(/0) sin(b+ /0)                    a= b+2/0  

                                         

                                           Maximum of the current I is 

                                           

                                                  Imax = 2Ic |cos(/0)|   
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SQUID is analog 

of light 

interference on 

double slit 

new critical current 
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Josephson junction energy  

Is () = Iс sin          Josephson equation   I 

2eV= ħ= ħd/dt    Josephson equations  II 

   =2 -1 ;   V= [ħ /(2e)]d/dt =(2/0)d/dt  
                               

where              
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Josephson junctions in 

“quantum limit” 

Superconducting qubits 



Nanotechnology  

shadow deposition at two angles 

base pressure 10 -10 mbar  

AFM image of Al/Cu/Al bridge  

- Different technique of thin film 

sputtering 

- Optical and electron lithography 

- Ion and Reactive ion etching 

~200 × 300 nm2  



Cu deposition

Al deposition

PMMA

MMA

PMMA

MMA

SiO

SiO

SiO

lift-off

shadow evaporation at two angles 

base pressure 10 -10 mbar  

Al1 evaporation 

Al2 

evaporation 

Lift-off 

PMMA 

MMA 

Shadow evaporation technique 

0.1 m  

Al-AlOx-Al Josephson junction 
fabrication by means of electron 

beam lithography and shadow 
evaporation   
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“Equation of motion” for Josephson tunnel 

junction.     Analogy with a pendulum.  

Resistive-Capacitive Shunted Junction (RCSJ-model)                         

                           IJ=Ic sin - “Josephson channel” 

                                In=V/Rn= [0/(2Rn)]t - “resistive channel” 

                                ID=CdV/dt =[0C/(2)]tt - “capacitive channel”  
                                        Ic sin + [0/(2Rn)]t + [0C/(2)]tt = Ie         |*EJ/Iс  

                                 [ħ/(2e)]2C tt + [ħ /(2e)]2Rn
-1t + EJ sin  = EJ (Ie/Iс) 

                                The pendulum motion equation 

                                           J  tt  +    t + m g l sin  = M 

                                      Phase angle                       Phase   difference                
                            Moment of inertia   J=m l 

2          [ħ /(2e)]2C  

                                               Viscosity coefficient                        [ħ /(2e)]2Rn
-1 

                                                Restoring moment   (m g sin ) l                        EJ sin    
                                                Applied torque moment   T                              EJ (I/Iс) 

Ie 

In 
IJ 

ID 

J Rn C 

 

m 

l 

(mg sin)l 

mg 

T 



Submicron-scale tunnel junction with small enough capacitance C. 

Single electron Coulomb (charging) energy EC =e2/(2C) is large. 

             Q is charge and Ec=Q2/(2C)=CV2/2 is energy of this capacitor. 

             Discharge of the capacitor is not favorable for some value Q: 

             new energy E'c=(Q-|e|)2/(2C) becomes larger for 0<Q<|e|/2 ! 

        Coulomb blockade of tunneling for V:  (V=Q/C) 

                                           0<V<|e|/(2C) 

       The increase of the differential resistance  

        around zero bias is called the Coulomb blockade.  

 

Limitation on T and R:  

Ec>kT (thermal fluctuations), C<10-15 F,T>1 K 

1/RT+1/Re<1/RQ (quantum fluctuations)  

RQ=h/ (4e2)~6 k is the quantum resistance       

13 

Submicron tunnel junctions in normal state 

N I N 

 E'c-Ec>0 

Q/e= 

VC/e 

Region of       

Coulomb      

blockade 

Tunneling is 

prohibited 

E Ec E'c 

Q/e 

1/2 -1/2 



14 

Josephson junction in quantum limit 

“Quantum Josephson junction” is a submicron-scale tunnel junction with small 

enough capacitance C0. 

By analogy with “Quantum pendulum”: when m0 null oscillations arise, 

because  M ~ ħ.  (=0 и M=0 without oscillations!) 

                        M= J t   is  angular momentum. 

Josephson junction angular momentum is 

M= J t =[ħ /(2e)]2Ct = [ħ /(2e)]C V=Q[ħ /(2e)] 

        Q ~ 2e       or     n ~ 1  

where Q is the junction (capacitor) charge, n= Q/(2e) is excess Cooper pairs.  
Quantum Josephson junctions have large Coulomb energy  EC ~ EJ  due to 

small capacitance:  EC =(2e)2/(2C)  

              (Tunnel junctions with sizes smaller than 0.3x0.3 m
2

, C~10-15F) 

Thus total energy of the quantum Josephson junction is 

  E= (2e)2/(2C) + EJ (1- cos ) - [0/(2)]I       
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Thermal and quantum fluctuations of the 

critical current 

The resistive state is observed at Iс* <  Iс= (2e/ħ)EJ  

       due to thermal activation through the barrier  U0(I) 
        The rate of the thermo-activated decay is  
 
 

 
                where  (I) = p[1- (I/Iс)

2]1/4;      p=(LJC)-

1/2 

                                  
                      and     U0(I)=(42/3) EJ[1- (I/Iс)]

3/2 

 

Quantum decay for “quantum” Josephson junctions 

                                                                 (from ground state) 

 

 

 

           kT ħ (I),  the null oscillation energy 

  U0(I) 

(I)  

T 

)
kT

)I(U
exp(ω(I)ω 0

T 

)
ω(I)

)I(U
exp(ω(I)aω 0

qQ






 The Coulomb blockade fixes the charge, reducing  Q 

in the uncertainty relation  Q ~ 2e This means 

that the uncertainty (blurring) of the phase, , 

increases. 

      

Phase quantum fluctuations and macroscopic 

quantum coherence 

S  I  S 

Potentials for the phase 

and the flux qubits 

IVC of a submicron-scale 

junction 

quantization 

levels in the well 

of the potential 

quantum decay 

of states 
quantum 

coherence due to 

quantum tunneling 



Qubit is a quantum bit of information 
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superposition of states  

quantum parallelism 

x 

y 

z 



0



1

The simplest qubit is a single quantum particle with spin ½ 

classical bit 

(bit) 

quantum bit 

(qubit) 

0 1

10  

wave function 

Bloch 

sphere 

Y = cos
q

2
0 +eij sin

q

2
1



SUPERCONDUCTING QUBITS 

• superconducting nanostructures 

• ultra-low temperatures (<50 mK) 

• microwave technique 

2D-transmon (x-mon), readout by the coplanar (on-chip) resonator 

clockwise 

сounter 

clockwise 

01f
manipulations by qubit states 

by means of microwaves pulses 

6-10 GHz 

0

1
Flux qubit 

current in 

the ring Josephson tunnel 

junctions 

artificial atom 



Superconducting flux qubit 



Flux qubit spectrum 

0  > 

1  > 0  > 

1  > 

E 

01f

States are controlled 

by microwave 

pulses 

Ф0/2 Ф 

Iq Iq 

|1 

|0 

Δt 
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Readout: the z-projection of the qubit state is read by applying a reading pulse at 
the resonator frequency. 

The result: a microwave pulse with a controlled amplitude, duration, and 
phase is applied to the qubit, allowing to manipulate the qubit state. 

Pulse 
preparation 

AWG 

PULSE TECHNIQUES OF MICROWAVE 

MANIPULATIONS AND CONTROL  OF QUBIT STATES 



Single qubit state readout 

The basis of the dispersive readout method: 
dispersive frequency shift of the resonator 

when the state of the qubit changes: 

= /ħ  is the qubit frequency; 

is effective coupling of resonator and qubit; 

is the initial resonant frequency of the resonator 

The projection of 

the qubit state on 

the z axis is read 

Ip is the current in the qubit ring 



Phase qubit: Rabi flopping 

|1 

|0 

Δt 



Coherence time: 

relaxation time T1 and free precession time T2 

Devoret & 

Schoelkopf, 

Science 339, 

1169 (2013) 



Methods of measuring of relaxation time and free 

precession time 

Время релаксации Т1 

Импульсная последовательность для 

измерения Т1 Результат измерения Т1: S12= A+Bexp[-∆t/Т1] 

Импульсная последовательность для 

измерения Т2* (биения Рамзи).  

LO = q0 +   

Время свободной прецессии Т2* 

Результат измерения Т2*:  

S12 = A+Bcos(t)exp[-t/T2*] 
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MISIS: Prof Ustinov  

Lab of Quantum Metamaterials 

• Low-temperature measurement   

• Qubit characterization 

MIPT: Prof Astafiev  

Lab of Artificial Quantum Systems 

• Low-temperature measurement 

• Nano-fabrication 

BMSTU: Dr Rodionov 

Professional nanotechnology center 
ISSP: Prof Ryazanov 

• Low-T, qubit characterization 

Russian consortium on development  

of superconducting quantum technologies 

 The consortium started on 2016  

 Qubits fabrication technology has been setup 

 Qubit control and manipulation techniques are developed 

 Some facilities still have to be setup  

Other players: Russian Quantum Center, Scoltech 
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May 2015 

the first 

qubit made 

in Russia 

Qubits in Russia 

fr
e
q
u
e
n
c
y
 

magnetic flux 

qubit spectrum 

1 m 

Flux qubit in MW line 

«anticrossings » 

resonator frequency 

 2016  

Transmon 

connected 

to resonator 
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© Martinis lab, 2015 

line 

capacitance 

shunted a 

Josephson 

junction 

емкостью ~ 20 

фФ 

resonator 

qubit 
100 мкм 

Csh~20 fF; =0.52;  

jc=0.5 кА/сm2; Ic=0.4 

А  

T2=1.3 мкс 

Проект «Лиман» - 1 этап  Flux qubit shunted by large capacitance 



3D-transmons  

The coherence 

    time 

    T2=5 μs  

3D-transmon in cavity 

resonator 

readout pulse at the 

resonator frequency 

π/2 pulses at the 

qubit frequency 



PLANAR QUBITS (XMONS) 

The coherence 

time  

T1=11.5 μs 

delay of readout (μs) delay of readout  (μs) 

delay of readout 

2 µm 

The coherence time  
T2=7 μs 



Implementation of single-qubit quantum gates 
 

 

  

Quantum gate NOT translates                             in     

Logical operations with qubits are called quantum gates 

10   10  




For example, +x|0> =|1> 

Superconducting qubit with  T2=2.14 ± 0.14 мкс.  

Implemintation of NOT gate   ( + x |0> =|1>) 

model experiment 

Fidelity (accuracy) of the 

single-qubit operation: 97%. 

Results of the radial 

tomography 



MULTIQUBIT SPECTRA (2-XMON-QUBIT SYSTEM) 

10-01 

11/2-02/2   
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Solenoid current, mA  
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MULTIQUBIT STRUCTURES (3-XMON-QUBIT SYSTEM) 

two-tone spectrum,  

readout by the first 

resonator 

two-tone spectrum, 

readout by the 

second resonator 

J ~20-30 MHz 

The middle transmon 

was used as a tunable 

coupler 

Q1 freq “z” 
Q1“xy” 

Q2 freq “z” 

Q2 

“xy” 

Q3 freq 

“z” 

Q3 
“xy” 

ro 

f = 6.85 GHz 

Q = 6000 

f = 7.15 GHz 

Q = 6000 

f = 7.00 GHz 

Q = 6000 

the control 

qubit 

the target 

qubit 



 

1

5 

A cross-resonant microwave signal 
is applied through the control qubit 
at the frequency of the target qubit  
+ the exciting π-pulse is applied at 
the frequency of the control qubit. 

IMPLEMENTATION OF TWO-QUBIT QUANTUM OPERATIONS 

The CNOT quantum gate moves state       to state       of the 

target qubit only if the control qubit is excited  

0 1

the control 
qubit 

the target 
qubit 

CONTROL 
NOT 

Input Output 

A B A B 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 

0.0       0.4      0.8       1.2 0.0       0.4      0.8       1.2 

the control qubit the target qubit 

excited  

in the ground state 

µs cross-resonance 

duration 

Cross-resonance Rabi 

oscillations 



GROVER SEARCH ALGORITHM DEMONSTRATION (2 QUBITS) 
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Pulse duration (µs) 

00 

01 

10 

iSWAP (0110) 

 

Initialization + Oracle U Grover reflection Us 

the control 

qubit 

the target 

qubit 

In the simplest case of a two-qubit system with 

N = 4, one iteration (one appeal to the oracle) 

is sufficient, and the final state of the idealized 

system exactly coincides with the desired one 

superposition of all basis states 



GROVER SEARCH ALGORITHM 

DEMONSTRATION (results) 
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search for state |00> search for state |01> 

search for state |10> search for state |11> 

|00> |01> |10> |11> 

readout states 

|00> |01> |10> |11> 

readout states 

number of  
“coin flips” 
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The blue columns indicate the number of different states being read for 10,000 runs. Database cells: |00>, 
|01>, |10>, |11>.  
The red columns represent the results expected for an ideal (error-free) quantum computer, and the black 
dotted line represents a 50% probability  (above the limit for a classical computer with a single Oracle call).  
Measured probabilities of correct execution of the state search algorithm:   |00> – 58%, |01> – 57%, |10> – 
53%, и |11> – 57%.  



 

• Analog devices (quantum simulators) are "direct" modeling 

of a specific material using an artificial quantum system. Fast 

search of system properties due to quantum parallelism (the 

system is simultaneously in all possible states, choosing the 

optimal one). 

 

• More advanced algorithmic devices (universal quantum 

computers) – finding the properties of the system through the 

use of quantum algorithms. They can be programmed like a 

regular computer. Not tied to a specific task. 

Two types of quantum computing devices 



MULTIQUBIT STRUCTURE 

TECHNOLOGY 
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Fabricated at Joint (Dukhov Institute of Automatics and Bauman Moscow State Technical 
University) Technological Center  

• Experimental samples of two-qubit circuits, including those with 

tunable coupling 

• Josephson parametric amplifiers with high saturation power based 

on Al-AlOx-Al junctions  

• 5-qubit chains of weakly anharmonic qubits coupled to each other 

• arrays of more than 20 qubits coupled to a microwave resonator 



ANALOG SIMULATION ON THE 5-QUBIT CHAIN 
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Microwave transmission through the chain of transmons  

S1,2 

1 

2 

3 

S1,2 

3-d qubit frequency tuning (by current I, A)  

Exp. 

MISiS 

Theory 

Dukhov 

Inst. 

Analog quantum simulation of an one-dimensional Ising spin chain 
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3-d qubit frequency tuning (by 

current I, A)  

Current I, 

A  

the Ising chain Hamiltonian with N=5, sigma-x (XX) 

coupling between adjacent qubits and the field along 
z, taking into account the dissipation 

Different qubit frequencies 

Calculation model based on the 

dynamics of the spin chain: 



ARRAY OF QUBITS COUPLED THROUGH A 

COMMON RESONATOR 

40 

2 

Common 
resonator  

24 qubits 
with 
individual 
resonator
s 

 dc-lines for the qubit frequency tuning 

N, number of qubits 

s
p

lit
ti

n
g

 o
f 

s
p

e
c

tr
a
, 

M
H

z 
 

Collective anticrossings 
increase  
~ a*N,   

where N  is the number of 
interacting qubits 

The coupling of the qubits with the 
common resonator is ~40 MHz 

Collective qubit anti-
crossings (splitting of 

spectra): 
the qubits were 

alternately tuned to a 
frequency of the 

common resonator 

Qubit 
#2 

Qubits #2 
and #3  

Qubits from #2 
to #6  

Qubits from #2 
to #11  

Qubits from #2 
to #16  

Qubits from #2 
to #24  
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Qubit frequency, GHz 

Qubit frequency, GHz 

N 


