Современные стандарты частоты в квантовой сенсорике

Н.Н. Колачевский

ФИАН

Учреждение Российской академии наук Физический институт им. П.Н. Лебедева РАН

Квантовые сенсоры

Преимущества:

точнее, компактнее, эффективнее

Квантовые сенсоры - широкий класс квантово-механических объектов, используемых для измерения различных физических величин.

- время и частота
- магнитные и электрические поля
- гравитационное поле
- вращение и ускорение
- температура
- механические напряжения
- концентрации примесей

Физический институт им. П.Н. Лебедева РАН

100 лет со дня рождения николая БАСОВА 1922 2022

Квантовые стандарты частоты

<u>Первая идея (1873) – James Clerk Maxwell:</u>

«Наиболее универсальная единица времени могла бы быть реализована на основе периода колебаний специально выбранного света, чья длина волны является единицей длины.»

- частота определяется переходом между двумя уровнями, хорошо отделенными от соседних, и этот переход происходит в одном изолированном атоме, находящемся в покое
- узкие спектральные линии, не подверженные возмущениям
- когерентное излучение

К первому мазеру

В ЛАБ. ХИМИИ Моск.Мех.Ин-та (МИФИ), 1946 г.

Молекулярный генератор

Тезисы доклада Н.Г.Басова и А.М.Прохорова на заседании Всесоюзного научного общества радиотехники и радиосвязи им. А.С.Попова

[октябрь 1954 г.]

Большинству присутствующих и: развития за последнее время новог радиоспектроскопии молекул. Иссл стотных спектров поглощения молев ные сведения о строении молекул отправным пунктом при построении связи и теории строения ядра. С др нансное поглощение энергии газами ваться для создания эталонов частот занные с молекулярными переходам от внешних условий.

Как первая задача точного исс. так и вторая задача получения этал ограничены тем, что спектральные л являются монохроматическими, а и статочно большую ширину. Говоря языком, *Q* спектральных линий, ра быть сделано больше $10^5 \div 10^6$, добротности лучших кварцев.* Ши линий обусловлена, главным образо торами:

Заметим, что в отличие от кварцев, которые стаг та спектральных линий не имеет временной зави

T-m Marcun myra ynob repender

- 2+2

nde Ei -

N.

you und purce co Koudecajop

СДЕЛАНО!

amobod Gr редонатор Типа Если

1954 год

Общая схема пассивного стандарта

Дисперсия Аллана

$$\sigma_y^2(\tau) = \left\langle \sum_{i=1}^2 \left(\overline{y}_i - \frac{1}{2} \sum_{j=1}^2 \overline{y}_j \right)^2 \right\rangle = \frac{1}{2} \langle (\overline{y}_2 - \overline{y}_1)^2 \rangle.$$

Измерение величины *у* ведется с периодичностью *T*. Время усреднения $\tau < T$.

Пример: линейный дрейф частоты

y(t) = at

- $\overline{y}_1 = [at_0 + a(t_0 + \tau)]/2$
- $\overline{y}_2 = [a(t_0 + \tau) + a(t_0 + 2\tau)]/2,$

 $\sigma_y(\tau) = \left\langle a \tau / \sqrt{2} \right\rangle = \frac{a}{\sqrt{2}} \tau$ для линейного дрейфа частоты

В отличие от обычной дисперсии позволяет охарактеризовать процесс!

Дисперсия Аллана и спектральная плотность

Разные зависимости для разных типов шумов

дисперсия Аллана и спектральная плотность *S(f)*

Предельная нестабильность

$$f_y(\tau) = \frac{1}{K} \frac{1}{Q} \frac{1}{S/N} \frac{1}{\sqrt{\tau/c}}$$

 $K - \kappa o \Rightarrow \phi \phi$ ициент ~1
 $Q - добротность резонанса$
 $S/N - сигнал/шум$
 τ - время усреднения

Прогресс технологий

Частота – наиболее точно измеряемая величина. (сегодня на уровне 18 знака)

Применение

• Навигация и позиционирование.

Положения спутников, ракет, самолетов; беспилотные летательные аппараты, беспилотный транспорт, удаленное строительство

• Гравиметрия

Поиск полезных ископаемых, построение геоида, навигация по гравитационному полю

 Синхронизация обработки и передачи данных
 Высокочастотный трейдинг, синхронизация баз данных, интерферометрия со сверхдлинной базой

www.jpl.n asa.gov

www.microsemi.com

Наиболее точные стандарты сегодня

Микроволновые, фонтанного типа

Оптические на одиночных ионах

Оптические на атомах в решетке

 1×10^{-18}

Типичные характеристики

Оптические часы Микроволновые часы Кварцевые

Параметр / Наименование	Оптические	Первичный	Коммерческие	Компактные	Миниатюрные	Прецизионные	Наручные
	стандарты	стандарт	часы на	атомные часы	атомные часы	кварцевые	кварцевые
	частоты	частоты	атомном пучке			часы	часы
Погрешность	10 ⁻¹⁸	10 ⁻¹⁶	10 ⁻¹³	10 ⁻¹¹	10 ⁻¹⁰	10 ⁻⁷	10 ⁻⁵
Нестабильность	0.1 нс/год	10 нс/год	10 мкс/год	0.1 мкс/сут	1 мкс/сут	100 мкс/сут	1 с/сут
Габариты	10 ⁷ см ³	10 ⁷ см ³	10 ⁴ см ³	100 см ³	10 см ³	1÷10 см ³	10 мм ³
Мощность	1 кВт	1 кВт	0.1÷0.5 кВт	1 Вт	120 мВт	100 мВт	10 мкВт
Стоимость	> \$5 млн.	> \$1 млн.	\$50 тыс.	\$2 тыс.	\$300	\$100	\$1
Изображение							The second second

 "Рабочая лошадка" метрологических лабораторий

<u>Прецизионное хранение и воспроизведение</u> размера единиц частоты и времени в составе эталонных комплексов:

- национальные службы времени и частоты;
- пункты слежения и управления спутниковых радионавигационных систем;
 РСДБ;

Водородный мазер

Рабочая частота 1.42 ГГц, 21 см

Эксперимент "Gravity probe A"

$$Z = (1 + \alpha) \frac{\Delta U}{c^2}$$

• 1976 год

- Суборбитальный запуск h = 10000 км
- Сличение частоты бортового Н-мазера с наземной станцией

Подтверждено на уровне $|\alpha| < 7 imes 10^{-5}$

α – мера нарушения принципа
 эквивалентности (LLI)

R. F. C. Vessot et al., Phys. Rev. Lett. 45, 2081 (1980).

Миссия "Радиоастрон" (РСДБ-телескоп), ФИАН

ЗАО «ВРЕМЯ -Ч», Н.Новгород

АКТИВНЫЙ БОРТОВОЙ ВОДОРОДНЫЙ СТАНДАРТ ЧАСТОТЫ ДЛЯ КОСМИЧЕСКОГО РАДИОТЕЛЕСКОПА

7 лет на орбите 2011-2018

Миссия "Радиоастрон" (РСДБ-телескоп), ФИАН

<u>ноябрь 2009 – январь 2010</u> – комплексные испытания в НПО им.Лавочкина

РСДБ проекты ФИАН ("Миллиметрон")

Обсерватория «Миллиметрон» (ФКП 2016 - 2030) (проект «Спектр-М») предназначена для проведения исследований астрономических объектов во вселенной в дальнем инфракрасном, субмиллиметровом и миллиметровом диапазонах спектра электромагнитного излучения со сверхвысокой чувствительностью в режиме одиночного телескопа и рекордно высоким угловым разрешением в режиме наземно-космического интерферометра.

✓ Бортовой мазер активного типа
 ✓ Стабильность частоты

 7×10⁻¹⁴ @ 1 с,
 2×10⁻¹⁵ @ 100 с,
 8×10⁻¹⁶ @ 1000 с.

 ✓ Время жизни больше 10 лет

Системы ГНСС (GPS, ГЛОНАСС, GALILEO, Beidou...)

Повышение требований к частотно-временным характеристикам ГНСС

Часы в системах ГНСС

	ГЛОНАСС	ГЛОНАСС-М	ГЛОНАСС-К
Статус	исключен	в работе	в работе
Первый запуск	1982	2003	2011
Суточная		1x10 ⁻¹³	1x10 ⁻¹⁴
нестабильность	5x10 ⁻¹³		
бортовых часов		10 нс	1 нс

• Снижение нестабильности БСЧ

2025 год:	5x10 ⁻¹⁵
далее:	1x10 ⁻¹⁵

• Увеличение количества станций слежения

Рубидиевые часы RAFS (GALILEO)

В

- Рубидиевая ячейка резонаторе
- Рубидиевая лампа для накачки
- Чувствительны к температуре
- Погрешность около 1 нс
 в сутки

Информация о водородном мазере для ГАЛИЛЕО

SAT - GPTB From 2015/05/10 to 2015/05/16

Quadratic fit removed MJD 57153 57155 57156 57158 57152 57154 57157 4 PHASE (ns) -2 -4 -6 15/05/10 00:00 15/05/13 00:00 15/05/14 00:00 15/05/15 00:00 15/05/11 00:00 15/05/12 00:00 15/05/16 00:00 E11-PHM-B E12-RAFS-A E14-PHM-B E18-PHM-B E19-PHM-A . .

Сравнение шкал времени 4-х бортовых мазеров (PHM) и Rbстандарта (RAFS – зеленая кривая)

Преимущество водородных мазеров очевидно!

Хронизатор (БСУ) ГЛОНАСС

• Цезиевая лучевая трубка @ 9,12 ГГЦ

РИРВ: стандарт "ФИАНИТ" для наземных потребителей 1x10⁻¹³/сутки

Схема Рэмси

$$p(\tau + T + \tau) \approx \frac{1}{2} \sin^2 \Omega_R \tau [1 + \cos 2\pi (\nu - \nu_0)T]$$

Первичный пучковый стандарт

Определение секунды СИ

9 192 631 770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями энергии основного состояния атома цезия-133 при T=0

Цезиевый фонтан – лучший первичный стандарт

Лазерное охлаждение атомов до Т ~5 мкК

Цезиевый фонтан NIST-F1

Цезиевый "фонтан" в космосе

Проект PHARAO

Работа протестирована в условиях микрогравитаци (параболический полет)

КПН-часы

Микроволновые vs оптические часы

Величина	Фонтан	Оптика
FWHM	1 Гц	10 Гц
несущая	10 ГГц	500 ТГц
Q-фактор	10 ¹⁰	5×10 ¹³
НСП 10⁻¹⁶ в долях линии	10 ⁻⁶	1/200
Преимущества оптического диапазона

N. Hinkley at al., Science Vol. 341 no. 6151 pp. 1215-1218 (2013)

Устройство оптических часов

Часовой лазер

Активная стабилизация частоты по

внешнему резонатору

- Компактные надежные системы на основе ультрастабильных резонаторов УЛЕ
- Температурная компенсация (критическая точка Т_с≈ 300 К)
- Вибрационная компенсация (специальное крепление)

Сличение

42

Тепловые шумы

Случайное движение поверхности зеркал из-за теплового возбуждения колебательных мод.

Смещение положения поверхности приводит к флуктуациям частоты

Флуктуационно-диссипативная теорема

Если отклик x(t) на внешнее воздействие f(t) можно представить в виде $x(t) = \int \alpha(\tau) f(t-\tau) d\tau$.

или $\tilde{x}(\omega) = \tilde{\alpha}(\omega)\tilde{f}(\omega)$ (Фурье-образ), то спектр

флуктуаций записывается как

$$S_x(\omega) = \hbar \alpha''(\omega) \coth\left(\frac{\hbar \omega}{2k_B T}\right), \quad \alpha''(\omega) = \Im[\tilde{\alpha}(\omega)]$$

В классическом пределе ($k_BT >> \hbar \omega$)

$$S_x(\omega) = \frac{2k_BT}{\omega}\alpha''(\omega)$$

имеем:

Вклады в тепловые шумы резонатора

Компонент	$\sqrt{S(f)},$	$\sqrt{S(f)},$	Девиация Аллана
	$M/\sqrt{\Gamma u}$	$\Gamma u/\sqrt{\Gamma u}$	$\sigma_{_{\mathcal{Y}}}$
Тело	1.7×10^{-18}	0.01	
Подложка	4.9×10^{-17}	0.27	
Покрытие	5.4×10^{-17}	0.30	
Сумма:	7.2×10^{-17}	0.4	1.1×10^{-15}

Резонаторы Фабри-Перо (ФИАН)

Криогенные кремниевые резонаторы

Рекордная спектральная ширина линии лазера <30 мГц

Фемтосекундный синтезатор оптических частот

Дж. Холл Т. Хэнш 2003 г

Лазер с пассивной синхронизацией мод

 $\omega_n = n\omega_r + \omega_{CE}$ при $\omega_{CE} < \omega_r$

Счетчик оптических циклов

Каждая мода может использоваться Для измерения оптических частот

Миллион стабилизированных лазеров в одном пучке

Первый ФСОЧ (Ті:Sa лазер)

Фотоннокристаллические волокна

Расширение спектра за счет четырехволнового смешения

ФСОЧ в космических миссиях

бортовой ФСОЧ (на фс волоконном лазере 1.5 мкм)

проект FOKUS (Menlo Systems), суборбитальный запуск январь, 2016

ФСОЧ – преобразователи на чипах

A. Gaeta, Photonic-chip-based frequency combs, Nature Photonics volume 13, pages158–169 (2019)

Атомы в оптических решетках

Плюсы и минусы

плюсы

- Много атомов 10⁵
- Захват любых спиновых состояний
- Хороший оптический доступ
- Режим Лэмба-Дике
- Снижение столкновительных сдвигов

МИНУСЫ

- Ограниченное время жизни
- Малая глубина ловушки < мК
- Решетка возмущает оптический переход
- Рассеяние фотонов решетки и разогрев

Идеологический прорыв – формулировка концепции "магической длины волны" (Х. Катори)

Магическая длина волны решетки

D. Sukachev et al., Phys. Rev. A 94, 022512 (2016)

Точное определение МДВ

Сдвиг излучением черного тела

Лидирующий систематический сдвиг при комнатной те мпературе

Atom	Frequency shift @ 300 K, 10 ⁻¹⁸
Sr, 698 nm	-5500
Yb, 578 nm	-2700
Hg, 266 nm	-160

- Охлаждение до криогенных температур
- Точное измерение температуры + расчет
- Измерение двух переходов
- Поиск систем с малой чувствительностью к BBR

Си<u>стемы с малой чувствительностью к BBR</u>

• Clock transitions in some single-charged ions (Al⁺, Yb⁺, Lu⁺)

lon	Frequency shift @ 300 K, 10 ⁻¹⁸
Al+, 267 nm	-4
Yb⁺, 467 nm (E3)	-110
Lu⁺, 708 nm	-1.4

- Clock transitions in some highly charged ions
- Isomeric nuclear clock transition in ²²⁹Th

Оптические часы на атомах тулия

- Lanthanide
- Single stable isotope ¹⁶⁹ Tm (bosonic)
- One vacancy in the inner 4*f* shell

- Magnetic-dipole transition $\lambda = 1.14 \ \mu m$
 - $\gamma = 1.2 \text{ Hz}$
- Strongly shielded from external electric fields by the closed outer 5s² and 6s² shells

 Low sensitivity to the BBR shift: < 7 x 10⁻¹⁸ at room temperature

Перспективные часы на нейтральном Тт

Часовой переход 1140 нм с крайне малым вкладом систематических сдвигов

ΦИΑΗ

magic

acuum pum

MOT coils

(a)

addition

= 1064 нм

821 nm

Элемент	Сдвиг частоты BBR @ 300 К	λ, ширина линии
Sr-87	-5500×10 ⁻¹⁸	698 нм <i>,</i> 1 Гц
Tm-169	2.3×10 ⁻¹⁸	1140 нм, 10 Гц

Golovovisin et al Inner-shell clock transition in atomic thulium with a small blackbody radiation shift, Nature Commun. 10, 1724 (2019) Golovovisin et al, Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts, Nature Commun. 12, 5171 (2021)

Синтетическая частота

$$E_F(m_F, B_0) = -\frac{E_{hf}}{2(2J+1)} + g_J \mu_B B_0 m_F \pm \frac{E_{hf}}{2} \sqrt{1 - \frac{4m_F}{2J+1}x + x^2}$$

Обнуление зеемановского сдвига

*B*₀, G

Транспортируемые часы: РТВ, NIST, ВНИИФТРИ

нейтральные атомы в решетках

Sr (RIKEN, PTB...) Yb (NIST, ВНИИФТРИ...)

S. B. Koller, J. Grotti, S. Vogt, et al., "Transportable optical lattice clock with 7 × 10−17 uncertainty," *Phys. Rev. Lett.*, vol. 113, 2017,
W. F. McGrew et al, Atomic clock performance enabling geodesy below the centimetre level, Nature 564, 87–90 (2018)

Гравитационное красное смещение

Смещение частоты

$$\nu' = \nu \left(1 + \frac{\Delta U}{c^2} \right)$$

Изменение хода времени

$$\tau' = \tau \left(1 - \frac{\Delta U}{c^2} \right)$$

Измерение гравипотенциала

Ортометрия на основании релятивистского геоида

Гравиметрия с транспортируемыми Sr-87 часами

ГНСС: Δh=452.650 ± 0.039m (5 дней)

- ЛД: Δh=452.631 ± 0.013m (?)
- OЧ: Δh=452.596 ± 0.013m (сутки) g = 9.797248 (24) m/s²

$$\frac{\Delta\nu}{\nu_1} = (1+\alpha)\frac{\Delta U}{c^2}$$

M. Takamoto, Test of general relativity by a pair of transportable optical lattice clocks, Nature Photonics 14, 411 (2020)

Гравиметрия на миллиметровом масштабе

Стандарты на одиночных ионах

David Wieland (NIST, USA) Нобелевская премия - 2012

$$U_{rf}(\mathbf{x}, t) = \frac{V_{rf}}{2r_0^2} (x^2 - y^2) \cos(\omega_{rf} t)$$
$$\Phi_{ps}(\mathbf{x}) = \frac{Q^2}{m\omega_{rf}^2} \left(\frac{V_{rf}}{2r_0^2}\right)^2 (x^2 + y^2)$$

-микродвижение -макродвижение -осцилляции по z глубина ~ 1 эВ

Плюсы и минусы

ПЛЮСЫ

МИНУСЫ

- Глубокий потенциал
- Симпатическое охлаждение
- Квантовая логика
- Большое время жизни
- Нулевое поле
- Режим Лэмба-Дике

• Мало частиц

Метод квантовой логики

- Передача квантового состояния на соседний ион (другого типа) с использованием общих колебательных мод
- Позволяет работать с "темными" ионам, без возможности прямого считывания состояний

Узкие переходы в одиночных ионах. Метод квантовых скачков

Spectroscopy of ²⁷Al⁺

- 8 mHz linewidth clock transition
- Insensitive to external fields
- Smallest known room temperature blackbody shift [2]
- No accessible strong transition for cooling & state detection
- Use two-ion quantum logic techniques with ⁹Be⁺ and ²⁷Al⁺ for cooling, state preparation & readout [1]

[1] D.J. Wineland *et al.*, Proc. 6th Symposium on Frequency Standards and Metrology, 2001, pp. 361-368

Передача возбуждения через логический ион

Передача возбуждения через логический ион

 $|\psi_0
angle = |\!\downarrow
angle_L |\!\downarrow
angle_C |0
angle_M$

$$\begin{aligned} |\psi_0\rangle \to |\psi_1\rangle &= |\downarrow\rangle_L \left[\alpha|\downarrow\rangle_C + \beta|\uparrow\rangle_C\right] |0\rangle_M = \\ &= |\downarrow\rangle_L \left[\alpha|\downarrow\rangle_C |0\rangle_M + \beta|\uparrow\rangle_C |0\rangle_M\right]. \end{aligned}$$

Передача возбуждения через логический ион

 $|\psi_0
angle = |\downarrow
angle_L |\downarrow
angle_C |0
angle_M$

$$\begin{split} |\psi_{0}\rangle \rightarrow |\psi_{1}\rangle &= |\downarrow\rangle_{L} \left[\alpha|\downarrow\rangle_{C} + \beta|\uparrow\rangle_{C}\right] |0\rangle_{M} = \\ &= |\downarrow\rangle_{L} \left[\alpha|\downarrow\rangle_{C} |0\rangle_{M} + \beta|\uparrow\rangle_{C} |0\rangle_{M}\right]. \\ |\psi_{1}\rangle \rightarrow |\psi_{2}\rangle &= |\uparrow\rangle_{L} \left[\alpha|\uparrow\rangle_{C} |1\rangle_{M} + \beta|\uparrow\rangle_{C} |0\rangle_{M}\right] = \\ &= |\downarrow\rangle_{L} |\uparrow\rangle_{C} \left[\alpha|1\rangle_{M} + \beta|0\rangle_{M}\right]. \end{split}$$

Передача возбуждения через логический ион

 $|\psi_0
angle = |\downarrow
angle_L |\downarrow
angle_C |0
angle_M$

$$\begin{split} |\psi_{0}\rangle &\to |\psi_{1}\rangle = |\downarrow\rangle_{L} \left[\alpha|\downarrow\rangle_{C} + \beta|\uparrow\rangle_{C}\right] |0\rangle_{M} = \\ &= |\downarrow\rangle_{L} \left[\alpha|\downarrow\rangle_{C} |0\rangle_{M} + \beta|\uparrow\rangle_{C} |0\rangle_{M}\right]. \\ |\psi_{1}\rangle &\to |\psi_{2}\rangle = |\uparrow\rangle_{L} \left[\alpha|\uparrow\rangle_{C} |1\rangle_{M} + \beta|\uparrow\rangle_{C} |0\rangle_{M}\right] = \\ &= |\downarrow\rangle_{L} |\uparrow\rangle_{C} \left[\alpha|1\rangle_{M} + \beta|0\rangle_{M}\right]. \end{split}$$

 $|\psi_2\rangle \rightarrow |\psi_{\text{final}}\rangle = [\alpha |\uparrow\rangle_L + \beta |\downarrow\rangle_L] |\uparrow\rangle_C |0\rangle_M.$

Frequency Ratio of Al⁺ and Hg⁺ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place

Science (2008)

Лабораторная демонстрация

ИЗМЕРЕНИЕ РАЗНОСТИ ВЫСОТ С ИСПОЛЬЗОВАНИЕМ ВЫСОКОТОЧНЫХ СТАНДАРТОВ ЧАСТОТЫ

Первый наглядный эксперимент (NIST, США)

- сравнение двух идентичных
 AI⁺ часов в 2010 году
- одни часы были подняты на
 33 см относительно других

Переходы в многозарядных ионах

- Узкие оптические переходы в многозарядных ионах обладают существенно меньшим вкладом систематических эффектов (BBR и пр.).
- Большие трудности при реализации захвата и спектроскопии

Система Ar⁺ и Be⁺

P. Micke et al., Coherent laser spectroscopy of highly charged ions using quantum logic, Nature 578, 60–65 (2020)

Дрейф постоянной тонкой структуры

$$\nu_{\rm syn} = R[\nu_1(T) - \varepsilon_{12}\nu_2(T)] = R[\nu_1^{(0)} - \varepsilon_{12}\nu_2^{(0)}],$$

V. I. Yudin et al., Atomic Clocks with Suppressed Blackbody Radiation Shift, Phys. Rev. Lett. **107**, 030801 (2011)

 Частоты переходов обладают разной чувствительностью к изменению α

$$|d(\alpha)/dt| / \alpha < 1.0(1.1)10^{-18}/год$$

• Самое жесткое ограничение на дрейф постоянной тонкой структуры сегодня

Lange R. u ∂p. Improved Limits for Violations of Local Position Invariance from Atomic Clock Comparisons // Phys. Rev. Lett. American Physical Society, 2021. - T. 126. - № 1. - C. 11102.

Транспортируемые ионные часы: РТВ, РКС-ФИАН

ион Yb+ в ловушке Пауля

"Opticlock" PTB >2 × 10^{-17} (HCП)

РКС-ФИАН <5 × 10^{-16}

S. Ritter et al, "Opticlock: Transportable and easy-to-operate optical single ion clock", EFTF 2021

I. Semerikov et al., Compact Transportable Optical Standard Based on a Single 171Yb+ Ion ("YBIS" Project), 2018, Bull. Lebedev Phys. Inst. 45: 337

Основные модули и СЧ

Ионная ловушка (ИЛФ, ФИАН) 0.50.4

Электроника (РКС, Сколтех)

ФСОЧ (АВЕСТА)

Создание компактных интегрированных модулей

ФСОЧ

Ионная ловушка

Поиск темной материи (сверхлегкой)

Phys. Rev. Lett. **125**, 201302 – Published 12 November 2020

Ядерный переход в Th-229

Изомерный ядерный переход в тории-229 Уникальная система, рассматривается как перспективная для создания стандартов частоты

Прямое возбуждение перехода пока не реализовано

J. Thielking et al., Laser spectroscopic characterization of the nuclear-clock isomer 229mTh, Nature 556, pages 321–325 (2018)

Спасибо за внимание!

Учреждение Российской академии наук Физический институт им. П.Н. Лебедева РАН

