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Quantum compound trajectories and stochastic processes

A particular realization of the classical BD process



Quantum compound trajectories and stochastic processes
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Quantum compound trajectories and stochastic processes
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Quantum compound trajectories and stochastic processes
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The field state 𝜌(𝜉, 𝑡) at

the moment 𝑡 right after the 𝜉-
count
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Conditional state evolution
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Conditional state evolution (two theorems)

Theorem 2: If during a long single run with a record {𝜉𝑘, 𝑡𝑘} of
𝑁 counts a Fock state has been created, this state can be
inferred with unit asymptotic fidelity for ergodic regime using
only the sequence {𝜉𝑘} of counts’ types and its total duration
𝑡𝑁 without referring to the initial state and times {𝑡𝑘} of
intermediate clicks.

Theorem 1: Independently of the a priori state of an open
cavity field mode, the field state after a long single run
becomes, in ergodic case, a random Fock state.



Conditional state evolution (two theorems)
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Conditional state evolution (two theorems)
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Conditional state evolution (two theorems)
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Energy-to-time decoding:  
time scaling and  energy-time uncertainty relation
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Energy-to-time decoding:  
time scaling and  energy-time uncertainty relation
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K4HQS Protocol
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KN={𝝃j , tj }
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1. Register a random sequence 𝐾𝑁= {𝜉𝑘, 𝑡𝑘} of 𝑁
clicks from ideal detectors monitoring photons leaving

and entering the cavity.

2. ”Lock” the cavity from the environment 

to leave the in-cavity field unchanged.

3. For the registered sequence {𝜉𝑘}, calculate the minimum

value 𝑓𝑚𝑖𝑛of the f-key, the cumulative index 

and the threshold 

4. Provided that ,                the intracavity field will

be in the Fock state |𝑛𝐾 =        −𝑓𝑚𝑖𝑛+1⟩. Unlock the

cavity to use this state .

5. If     , one can start the protocol over, or

find the -window wherein 𝑡𝑁 is located, and determine

𝑚.
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The created state as a hidden resource
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Non-ideal detection and protocol feasibility
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Detectors with error 𝜖

𝑁𝜖 events will not be registered

Superconducting nanowire single-photon 
detectors with 99.5% detection efficiency

(J. Chang, et al, APL Photonics 6, 036114 
(2021))
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Interpretation and discussion
The considered model of continuous measurement of the cavity energy change, which in fact goes

back to the origins of Planck’s quantum theory, shows that as time goes by, the a posteriori quantum state

has progressively larger overlap with a random energy eigenstate.

For the ergodic regime in the limit 𝑡 → ∞, the realized measurement becomes an orthogonal POVM 

measurement.
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A posteriori state can be asymptotically stable, that is, independent of the a priori state. I.e. two initial states-of-
knowledge (e.g., complete  and limited)  will converge together as data is obtained, iff both contain m0

The considered quantum stochastic BD process has the classical counterpart, the collective BD process, which has 
not yet been discussed in the literature.



The collective BD process
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