Practical Approaches to Protecting Quantum Key Distribution Systems against Laser Damage Attack

Alferov Sergei, Optical Engineer

Outline

- Motivation for QKD usage
- QKD: how does it works?
- Types of attack
- LDA: what is it?
- Practical countermeasures to LDA
- Conclusion

Motivation for QKD usage

Trends

- Higher speed of data transfer: 10Gbps ->100Gbps -> 400Gbps
 Increasing volume of data transfer: 20-25% per year
 Risks
- High cryptographic key utilization rate
- Creating an Efficient Quantum Computer
- Compromising by staff

Motivation for QKD usage

Quantum computing

State of the art:

- 53-qubit Sycamore chip, Google (2019)
- 65-qubit processor Hummingbird r2, IBM (2020)
- 127-qubit processor Eagle, IBM (2021)

A close-up view of an IBM quantum computer

Motivation for QKD usage

General approaches to secret key distribution

	Asymmetrical	Key Distribution by	Quantum Key
	Cryptography	Trusted Courier	Distribution
Pros	Frequent key update	Reliable for QC (*)	Reliable for QC (*), High-rate key delivery
Cons	Vulnerable	Slow-rate key delivery,	Engineering tasks,
	for QC (**)	Compromising by staff	Flaws in implementation

(*) take into account the speed-up of a brute force attack by Grover's algorithm
(**) "in post-quantum cryptography we trust"

QKD: how does it works?

QKD: how does it works?

Behind the Curtain

Example of implementation QKD system [1]

QKD system often uses weak laser pulses (WLP) attenuated to quasi-single level

[1] J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, Opt. Express 15, 8465 (2007).

Types of attack

According to [1] there are several types:

- 1. Attack directly on quantum states (no access to QKD equipment)
- 2. Passive attack (side channels like detection of EM emission)
- 3. Active attack (probing of optical elements)
- 4. Modification of QKD system parameters by Eve (Detectors Mismatch, LDA [2])

We are considering Laser Damage Attack (LDA)

[1] С.Н. Молотков, ЖЭТФ, том 157, вып.6, стр. 963-990 (2020)
[2] V. Makarov, Phys. Rev. Appl. 13, 034017 (2020).

LDA what is it?

LDA what is it?

Once upon a time in Wonderland...

LDA what is it?

Attenuator – is the nearest element for Eve!

High power impact-> decrease attenuation-> increase fraction of multiphoton pulses

(*)- multiphoton pulses reveal vulnerability also for UM-attack, and beam splitter (transparent) attack

infotecs

Power of ALAS (1544 nm) 18 dBm; Power of ELAS (1561 nm) 25 ÷ 37.4 dBm, 1 dB step; Coupler: 10 % - DET1, 90 % - DUT; Filter suppression of attack radiation > 50 dB; Acquisition time / time step: 60 sec. / 10 ms Terrific!

The attenuation of DUT (dB):

 $A = P_1 + K_c - P_2 - A_s$

 K_c - insertion loss of coupler

 A_s - losses btw. the output of the coupler and DET2 (without of the DUT)

Practical countermeasures to LDA infotecs Neutral Density Filter [1]

[1] S.V. Alferov, K.E. Bugai, I.A. Pargachev, JETP LETTERS Vol. 116 No.2 (2022)

Neutral Density Filter

Circular crater with diameter approx. 0.9 mm

Crack around the crater

Uniform Power Dissipation Cascade of Fiber Attenuators

	N ⁼	Target	measured	Dissipation power			
Eve 🔜	Step	Attenuation, dB	Attenuation, dB	(input 5 W), W	(input 8,4 W), W		
	1	0,95	0,9	0,94	1,57		
X	2	1,22	1,2	0,98	1,65		
	3	1,7	1,8	1,05	1,76		
0 95	4	2,84	3,8	1,19	2		
0.95	5	11,04	9	0,74	1,25		
1.22 Max. dissipated power: $T_{th} = 2.5 W$ (one step) Method of producing:							
2.84	Lat fib	eral misalignn ers	nent of splic	ed Y			
11.04				_			

Parameters of Attenuator

Uniform Power Dissipation Cascade of Fiber Attenuators (*)

(*) in the patenting process

Fixed attenuator "female-female"

Initial attenuation $A_0 = 20.12 \ dB$

Attenuator based on Collapsing Mirror

 $A = -10 \cdot \log(k \cdot (1-k) \cdot R)$

- 1 Fiber Beam Splitter 2x2 (BS);
- 2 Absorber;
- 3 Collapsing Mirror

- K splitting ratio of BS;
- R reflection coefficient of mirror;
- K = 0.5 min. attenuation for any R

Attenuator based on Collapsing Mirror (*)

Reflection: R≈0.1 Initial att. ≈ 16 dB Material: Chromium Thick. ≈ 150 nm

(*) in the patenting process

Attenuator based on Collapsing Mirror

Picture of the mirror

before test after test

60.8°C ABTO 1 97.6

FLUKE 30.6°C Arro1 32.4 23.1 E0.12/7/21 19:28:22 E:0.95 BG:22.0 T:100%

Absorber

12/7/21 20:24:14

FC-FC Adapter

Pyrometry measurement

(*) Single Mode Fixed Fiber Optic Attenuator

(**) Attenuators based on optically active impurities

Please see the posters of Company's employees:

(*) Bugai K.E., Zyzykin A.P., Bulavin D.S. et al., Laser Damage Attack on a Simple Optical Attenuator Widely Used in Fiber-based QKD Systems

(**) Krishtop V.G., Popov V.G., Dvoretskiy D.A., Raman Cooling in Attenuators Doped with Optically Active Impurities

Conclusion

Solution	Behavior under LDA	PROS	CONS
NDF	Attenuation increase	Constant wide-range attenuation	High Price, Large size
Cascade	Attenuation reduce slightly	Cheap, Attenuation is freely adjustable	Production complexity
Fixed Att.	Common trend to increase attenuation	Cheap, Compact	Fixed nominal of attenuation
Collapsing Mirror	Attenuation increase	Attenuation is freely adjustable	Production complexity

- The experimental scheme imitate a hacking scenario for a QKD system
- The choice of one or another approach depends on the goals and technical capabilities of the developers of QKD systems

Thank you for your attenuation!

Sergey.Alferov@infotecs.ru

Подписывайтесь на наши соцсети

t.me/infotecs_news

rutube.ru/channel/24686363